Abstract
BackgroundLongitudinal studies using structural magnetic resonance imaging (MRI) and neuropsychological measurements (NMs) allow a noninvasive means of following the subtle anatomical changes occurring during the evolution of AD. New MethodThis paper compared two approaches for the construction of longitudinal predictive models: a) two-group comparison between converter and nonconverter MCI subjects and b) longitudinal survival analysis. Predictive models combined MRI-based markers with NMs and included demographic and clinical information as covariates. Both approaches employed linear mixed effects modeling to capture the longitudinal trajectories of the markers. The two-group comparison approaches used linear discriminant analysis and the survival analysis used risk ratios obtained from the extended Cox model and logistic regression. ResultsThe proposed approaches were developed and evaluated using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with a total of 1330 visits from 321 subjects. With both approaches, a very small number of features were selected. These markers are easily interpretable, generating robust, verifiable and reliable predictive models. Our best models predicted conversion with 78% accuracy at baseline (AUC = 0.860, 79% sensitivity, 76% specificity). As more visits were made, longitudinal predictive models improved their predictions with 85% accuracy (AUC = 0.944, 86% sensitivity, 85% specificity). Comparison with Existing MethodUnlike the recently published models, there was also an improvement in the prediction accuracy of the conversion to AD when considering the longitudinal trajectory of the patients. ConclusionsThe survival-based predictive models showed a better balance between sensitivity and specificity with respect to the models based on the two-group comparison approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.