Abstract

Electroencephalogram (EEG) was used in infants at 3-4 months and 11-12 months to longitudinally study brain electrical activity as the infants were exposed to structured forwards and reversed optic flow, and non-structured random visual motion. Analyses of visual evoked potential (VEP) and temporal spectral evolution (TSE, time-dependent amplitude changes) were performed on EEG data recorded with a 128-channel sensor array. VEP results showed infants to significantly differentiate between the radial motion conditions, but only at 11-12 months where they showed shortest latency for forwards optic flow and longest latency for random visual motion. When the TSE results of the motion conditions were compared with those of a static non-flow dot pattern, infants at 3-4 and 11-12 months both showed significant differences in induced activity. A decrease in amplitudes at 5-7 Hz was observed as desynchronized theta-band activity at both 3-4 and 11-12 months, while an increase in amplitudes at 9-13 Hz was observed as synchronized alpha-band activity only at 11-12 months. It was concluded that brain electrical activities related to visual motion perception change during the first year of life, and these changes can be observed both in the VEP and induced activities of EEG. With adequate neurobiological development and locomotor experience infants around 1 year of age rely, more so than when they were younger, on structured optic flow and show a more adult-like specialization for motion where faster oscillating cell assemblies have fewer but more specialized neurons, resulting in improved visual motion perception.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.