Abstract

Commercial production of swine often involves raising animals in large groups through the use of multi-stage production systems. In such systems, pigs can experience different degrees of contact with animals of the same or different ages. Population size and degree of contact can greatly influence transmission of endemic pathogens, including influenza A virus (IAV). IAV can display high genetic variability, which can further complicate population-level patterns. Yet, the IAV transmission in large multi-site swine production systems has not been well studied. The objectives of this study were to describe the IAV circulation in a multi-source nursery facility and identify factors associated with infection in nursery pigs. Pigs from five sow herds were mixed in one all-in/all-out nursery barn, with 81 and 75 pigs included in two longitudinal studies. Virus isolation was performed in Madin-Darby canine kidney cells and serology was performed using hemagglutination inhibition assays. Risk factor analysis for virological positivity was conducted using logistic regression and stratified Cox’s regression for recurrent events. In Study 1, at ≈30 days post-weaning, 100% of pigs were positive, with 43.2% of pigs being positive recurrently over the entire study period. In study 2, 48% of pigs were positive at the peak of the outbreak, and 10.7% were positive recurrently over the entire study period. The results suggest that IAV can circulate during the nursery phase in an endemic pattern and that the likelihood of recurrent infections was associated in a non-linear way with the level of heterologous (within-subtype) maternal immunity (p < 0.05). High within-pen intracluster correlation coefficients (> 0.75) were also observed for the majority of sampling times suggesting that pen-level factors played a role in infection dynamics in this study.

Highlights

  • Influenza A virus (IAV), an enveloped negative-stranded RNA virus, belongs to the family Orthomyxoviridae and is subtyped based on two surface glycoproteins: hemagglutinin (HA) and neuraminidase (NA) [1]

  • The production system had a history of ongoing respiratory disease that was attributed to infection with IAV, and this included lower than expected average daily gain during the nursery phase

  • When using the cluster membership based on heterologous H3N2 viruses, the results showed that the likelihood of having recurrent infection tended to be higher for pigs in cluster with high titers of heterologous H3N2 maternally-derived antibodies (MDA) present after weaning (OR = 2.66; p = 0.08; Table 5)

Read more

Summary

Introduction

Influenza A virus (IAV), an enveloped negative-stranded RNA virus, belongs to the family Orthomyxoviridae and is subtyped based on two surface glycoproteins: hemagglutinin (HA) and neuraminidase (NA) [1]. Influenza A viruses are the infectious agents frequently involved in acute respiratory disease outbreaks in pigs [2], with three subtypes (H1N1, H3N2, and H1N2) endemic worldwide [3]. Respiratory diseases in pigs can occasionally result in severe outcomes such as mortality and is commonly linked with reduction in the efficiency of feed conversion, growth retardation, and reduction in carcass quality [5]. As in many other species, infection in individual pigs is considered to be relatively simple with short duration of infectiousness and quick development of active immunity [6, 7]. Outbreaks of influenza in pigs are usually recognized by high morbidity and low mortality with sudden appearance of respiratory signs and by quick recovery of sick animals [7]. Transmissibility of influenza A virus in pigs can be influenced by factors such as age, immunity, vaccination status, and presence of maternal antibodies among other factors [9, 10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call