Abstract

Four ready-to-eat smoked fish plants were monitored for 2 years to study Listeria contamination patterns and the impact of plant-specific Listeria control strategies, including employee training and targeted sanitation procedures, on Listeria contamination patterns. Samples from the processing plant environment and from raw and finished product were collected monthly and tested for Listeria spp. and Listeria monocytogenes. Before implementation of intervention strategies, 19.2% of raw product samples (n = 276), 8.7% of finished product samples (n = 275), and 26.1% of environmental samples (n = 617) tested positive for Listeria spp. During and after implementation of Listeria control strategies, 19.0% of raw product samples (n = 242), 7.0% of finished product samples (n = 244), and 19.5% of environmental samples (n = 527) were positive for Listeria spp. In one of the four fish plants (plant 4), no environmental samples were positive for L. monocytogenes, and this plant was thus excluded from statistical analyses. Based on data pooled from plants 1, 2, and 3, environmental Listeria spp. prevalence was significantly lower (P < 0.05) for nonfood contact surfaces and the finished product area and for the overall core environmental samples after implementation of control strategies. Listeria prevalence for floor drains was similar before and after implementation of controls (49.6 and 54.2%, respectively). Regression analysis revealed a significant positive relationship (P < 0.05) between L. monocytogenes prevalence in the environment and in finished products before implementation of control strategies; however, this relationship was absolved by implementation of Listeria control strategies. Molecular subtyping (EcoRI ribotyping) revealed that specific L. monocytogenes ribotypes persisted in three processing plants over time. These persistent ribotypes were responsible for all six finished product contamination events detected in plant 1. Ribotype data also indicated that incoming raw material is only rarely a direct source of finished product contamination. While these data indicate that plant-specific Listeria control strategies can reduce cross-contamination and prevalence of Listeria spp. and L. monocytogenes in the plant environment, elimination of persistent L. monocytogenes strains remains a considerable challenge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call