Abstract

The vertically suspended slinky is a system where variable tension, and variable mass density, combine to produce a simple solution for the longitudinal normal modes. The time taken for a longitudinal wave to traverse a single turn of the slinky is found to be constant for a variety of slinky configurations. For the freely suspended slinky this constant traverse time yields standing wave frequencies that depend only on the length of the hanging slinky and not on the material, radius, or stiffness of the slinky. Data, obtained by students in a laboratory setting, are presented to illustrate the application of these results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.