Abstract

Reading comprehension is a foundational academic skill and significant attention has focused on reading development. This report is the first to examine the stability and change in genetic and environmental influences on reading comprehension across Grades 1 to 6. This developmental range is particularly important because it encompasses the timespan in which most children move from learning how to read to using reading for learning. Longitudinal simplex models were fitted separately for two independent twin samples (N = 706; N = 976). Results suggested that the shared environment contributed to variance in early but not later reading. Instead, stability in reading development was largely mediated by continuous genetic influences. Thus, although reading is clearly a learned skill and the environment remains important for reading development, individual differences in reading comprehension appear to be also influenced by a core of genetic stability that persists through the developmental course of reading.

Highlights

  • Reading comprehension, defined as the ability to understand and employ text for learning, is a foundational skill for academic and occupational success

  • Neurobiological studies suggest that reading comprehension is influenced by individual differences in brain structure and function [3] and ongoing molecular genetic studies continue to examine numerous regions of the genome [4, 5]

  • The strength of the relation between Reading Comprehension from grade to grade tended to increase over time

Read more

Summary

Introduction

Reading comprehension, defined as the ability to understand and employ text for learning, is a foundational skill for academic and occupational success. Reading comprehension is clearly a learned skill, subject to differences in instruction and in the environment [1, 2]. Neurobiological studies suggest that reading comprehension is influenced by individual differences in brain structure and function [3] and ongoing molecular genetic studies continue to examine numerous regions of the genome [4, 5].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.