Abstract

The objective of this study was to determine whether biomechanical and neuromuscular risk factors related to abnormal movement patterns increased in females, but not males, during the adolescent growth spurt. A total of 315 subjects participated in two testing sessions approximately 1 yr apart. Male and female subjects were classified on the basis of their maturation status as pubertal or postpubertal. Three trials of a drop vertical jump (DVJ) were collected. Maximum knee abduction angle and external moments were calculated during the DVJ deceleration phase using a three-dimensional motion analysis system. Changes in knee abduction from the first to second year were compared among four subject groups (female pubertal, female postpubertal, male pubertal, and male postpubertal). There were no sex differences in peak knee abduction angle or moment during DVJ between pubertal males and females (P > 0.05). However, pubertal females increased peak abduction angle from first to second year (P < 0.001), whereas males demonstrated no similar change (P = 0.90) in the matched developmental stages. After puberty, the peak abduction angle and moment were greater in females relative to males (angle: female -9.3° ± 5.7°, male -3.6° ± 4.6°, P < 0.001; moment: female -21.9 ± 13.5 N·m, male -13.0 ± 12.0 N·m, P = 0.017). This study identified, through longitudinal analyses, that knee abduction angle was significantly increased in pubertal females during rapid adolescent growth, whereas males showed no similar change. In addition, knee abduction motion and moments were significantly greater for the subsequent year in young female athletes, after rapid adolescent growth, compared with males. The combination of longitudinal, sex, and maturational group differences indicates that early puberty seems to be a critical phase related to the divergence of increased anterior cruciate ligament injury risk factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.