Abstract
AbstractThe inherent qualitative nature of textual data poses significant challenges for direct integration into statistical models. This paper presents a two-stage process for analyzing longitudinal textual data, offering a solution to this inherent challenge. The proposed model comprises (1) initial data preprocessing and sentiment extraction, followed by (2) applying a growth curve model to analyze the extracted sentiments directly. The paper also explores four distinct approaches for extracting sentiment scores in the dialogue, providing versatility to the proposed framework. The practical application of the proposed model is demonstrated through the analysis of an empirical longitudinal textual dataset. This framework offers a valuable contribution to the field by addressing the challenges associated with modeling qualitative textual data, providing a robust methodology for extracting and analyzing sentiments longitudinally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fudan Journal of the Humanities and Social Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.