Abstract

Neuroimaging data has been widely used to predict clinical scores for automatic diagnosis of Alzheimer's disease (AD). For accurate clinical score prediction, one of the major challenges is high feature dimension of the imaging data. To address this issue, this paper presents an effective framework using a novel feature selection model via sparse learning. In contrast to previous approaches focusing on a single time point, this framework uses information at multiple time points. Specifically, a regularized correntropy with the spatial-temporal constraint is used to reduce the adverse effect of noise and outliers, and promote consistent and robust selection of features by exploring data characteristics. Furthermore, ensemble learning of support vector regression (SVR) is exploited to accurately predict AD scores based on the selected features. The proposed approach is extensively evaluated on the Alzheimer's disease neuroimaging initiative (ADNI) dataset. Our experiments demonstrate that the proposed approach not only achieves promising regression accuracy, but also successfully recognizes disease-related biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.