Abstract

Longitudinal magnetic resonance imaging (MRI) has been proposed for tracking the progression of Alzheimer's disease (AD) through the assessment of brain atrophy. Detection of brain atrophy patterns in patients with AD as the longitudinal disease tracker. We used a refined version of orthonormal projective non-negative matrix factorization (OPNMF) to identify six distinct spatial components of voxel-wise volume loss in the brains of 83 subjects with AD from the ADNI3 cohort relative to healthy young controls from the ABIDE study. We extracted non-negative coefficients representing subject-specific quantitative measures of regional atrophy. Coefficients of brain atrophy were compared to subjects with mild cognitive impairment and controls, to investigate the cross-sectional and longitudinal associations between AD biomarkers and regional atrophy severity in different groups. We further validated our results in an independent dataset from ADNI2. The six non-overlapping atrophy components represent symmetric gray matter volume loss primarily in frontal, temporal, parietal and cerebellar regions. Atrophy in these regions was highly correlated with cognition both cross-sectionally and longitudinally, with medial temporal atrophy showing the strongest correlations. Subjects with elevated CSF levels of TAU and PTAU and lower baseline CSF Aβ42 values, demonstrated a tendency toward a more rapid increase of atrophy. The present study has applied a transferable method to characterize the imaging changes associated with AD through six spatially distinct atrophy components and correlated these atrophy patterns with cognitive changes and CSF biomarkers cross-sectionally and longitudinally, which may help us better understand the underlying pathology of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call