Abstract

How do transcriptomics vary in haploid human androgenote embryos at single cell level in the first four cell cycles of embryo development? Gene expression peaks at the fourth cell cycle, however some androcytes exhibit unique transcriptional behaviors. The developmental potential of an embryo is determined by the competence of the oocyte and the sperm. However, studies of the contribution of the paternal genome using pure haploid androgenotes are very scarce. This study was performed analyzing the single-cell transcriptomic sequencing of 38 androcytes obtained from 10 androgenote bioconstructs previously produced in vitro (de Castro et al., 2023). These results were analyzed through different bioinformatics software such as g: Profiler, GSEA, Cytoscape, and Reactome. Single cell sequencing was used to obtain the transcriptomic profiles of the different androcytes. The results obtained were compared between the different cycles studied using the DESeq2 program and functional enrichment pathways using g: Profiler, Cytoscape, and Reactome. A wave of paternally driven transcriptomic activation was found during the third-cell cycle, with 1128 upregulated and 225 downregulated genes and the fourth-cell cycle, with 1373 upregulated and 286 downregulated genes, compared to first-cell cycle androcytes. Differentially expressed routes related to cell differentiation, DNA-binding transcription, RNA biosynthesis and RNA polymerase II transcription regulatory complex, and cell death were found in the third and fourth with respect to the first-cell cycle. Conversely, in the fourth cell cycle, 153 downregulated and 332 upregulated genes were found compared with third cell cycle, associated with differentially expressed processes related to E-box binding and zinc finger protein 652 (ZNF652) transcription factor. Further, significant overexpression of LEUTX, PRAMEF1, DUXA, RFPL4A, TRIM43, and ZNF675 found in androgenotes, compared to biparental embryos, highlights the paternal contributions to zygote genome activation. All raw sequencing data are available through the Gene Expression Omnibus (GEO) under accessions number: GSE216501. Extrapolation of biological events from uniparental constructs to biparental embryos should be done with caution. Maternal and paternal genomes do not act independently of each other in a natural condition. The absence of one genome may affect gene transcription of the other. In this sense, the haploid condition of the bioconstructs could mask the transcriptomic patterns of the single cells. The results obtained demonstrated the level of involvement of the human paternal haploid genome in the early stages of embryo development as well as its evolution at the transcriptomic level, laying the groundwork for the use of these bioconstructs as reliable models to dispel doubts about the genetic role played by the paternal genome in the early cycles of embryo development. This study was funded by Instituto de Salud Carlos III (ISCIII) through the project 'PI22/00924', co-funded by European Regional Development Fund (ERDF); 'A way to make Europe'. F.D. was supported by the Spanish Ministry of Economy and Competitiveness through the Miguel Servet program (CPII018/00002). M.J.E. was supported by Instituto de Salud Carlos III (PI19/00577 [M.J.E.]) and FI20/00086. P.dC. was supported by a predoctoral grant for training in research into health (PFIS PI19/00577) from the Instituto de Salud Carlos III. All authors declare having no conflict of interest with regard to this trial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call