Abstract

We describe and analyze a longitudinal diffusion tensor imaging (DTI) study relating changes in the microstructure of intracranial white matter tracts to cognitive disability in multiple sclerosis patients. In this application the scalar outcome and the functional exposure are measured longitudinally. This data structure is new and raises challenges that cannot be addressed with current methods and software. To analyze the data, we introduce a penalized functional regression model and inferential tools designed specifically for these emerging types of data. Our proposed model extends the Generalized Linear Mixed Model by adding functional predictors; this method is computationally feasible and is applicable when the functional predictors are measured densely, sparsely or with error. An online appendix compares two implementations, one likelihood-based and the other Bayesian, and provides the software used in simulations; the likelihood-based implementation is included as the lpfr() function in the R package refund available on CRAN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.