Abstract
Prognosis prediction is a pivotal aspect of survival analysis, particularly when considering competing risks. The contemporary landscape is enriched with an abundance of biobank data encompassing diverse risk factors like genetics, transcriptomics, and electronic health records, fueling efforts to enhance prognostic predictions. However, the resulting predictive models suffer from rare event rates, limited sample sizes, high dimensionality, and low signal-to-noise ratios. To address these challenges and amplify predictive capabilities, the integration of historical prediction models has emerged as a promising approach. Yet, prevailing integration methods often rest upon the premise of comparable underlying distributions across disparate data sources—a presumption that frequently diverges from reality. Disregarding the inherent heterogeneity among these information sources can inadvertently introduce substantial bias, underscoring the urgency of integrated competing risk analyses that systematically accommodate cohort heterogeneity. In response, we propose an original solution: a longitudinal multinomial relative entropy-based integration framework. This methodology incorporates the established prediction models from the literature, yielding refined prognostic predictions for newly acquired datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.