Abstract

Pregnancy is characterized by a complexity of metabolic processes that may impact fetal development and ultimately, infant health outcomes. However, our understanding of whole body maternal and fetal metabolism during this critical life stage remains incomplete. The objective of this study is to utilize metabolomics to profile longitudinal patterns of fasting maternal metabolites among a cohort of non-diabetic, healthy pregnant women in order to advance our understanding of changes in protein and lipid concentrations across gestation, the biochemical pathways by which they are metabolized and to describe variation in maternal metabolites between ethnic groups. Among 160 pregnant women, amino acids, tricarboxylic acid (TCA) cycle intermediates, keto-bodies and non-esterified fatty acids were detected by liquid chromatography coupled with mass spectrometry, while polar lipids were detected through flow-injected mass spectrometry. The maternal plasma concentration of several essential and non-essential amino acids, long-chain polyunsaturated fatty acids, free carnitine, acetylcarnitine, phosphatidylcholines and sphingomyelins significantly decreased across pregnancy. Concentrations of several TCA intermediates increase as pregnancy progresses, as well as the keto-body β-hydroxybutyrate. Ratios of specific acylcarnitines used as indicators of metabolic pathways suggest a decreased beta-oxidation rate and increased carnitine palmitoyltransferase-1 enzyme activity with advancing gestation. Decreasing amino acid concentrations likely reflects placental uptake and tissue biosynthesis. The absence of any increase in plasma non-esterified fatty acids is unexpected in the catabolic phase of later pregnancy and may reflect enhanced placental fatty acid uptake and utilization for fetal tissue growth. While it appears that energy production through the TCA cycle increases as pregnancy progresses, decreasing patterns of free carnitine and acetylcarnitine as well as increased carnitine palmitoyltransferase-1 rate and β-hydroxybutyrate levels suggest a concomitant upregulation of ketogenesis to ensure sufficient energy supply in the fasting state. Several differences in metabolomic profiles between Hispanic and non-Hispanic women demonstrate phenotypic variations in prenatal metabolism which should be considered in future studies.

Highlights

  • The state of pregnancy is associated with many complex metabolic alterations in order to meet the energetic demands of the developing fetus and ensure deposition of adequate energy substrate stores to contribute to neonatal nutritional requirements following birth

  • Metabolomic analysis quantified the following metabolites: 21 amino acids (AA) which may be classified as essential and non-essential; 21 Nonesterified fatty acids (NEFA) which included 7 saturated (C11:0, C12:0, C14:0, C15:0, C16:0, C17:0, C18:0), 5 monounsaturated (C14:1, C16:1, C17:1, C18:1, C20:1) and 9 polyunsaturated (C18:2, C18:3, C20:2, C20:3, C20:4, C20:5, C22:4, C22:5, C22:6) NEFA; 164 polar lipids including sum of hexoses, free carnitine and 15 comprised acylcarnitines (Carn) (3 short-chain (C2-C4), 5 medium-chain (C8-C12) and 7 long-chain (C14-C18) acylcarnitines), 17 lyso-PL, 39 PCaa, 37 PCae, 54 SM; and 14 metabolites involved in fatty acid and amino acid oxidation, among them tricarboxylic acid (TCA) intermediates, keto acids of branched chain AA (BCAA) degradation and keto bodies

  • Bonferroni correction for multiple comparisons (N = 97*3 timepoints = 291) implies values are statistically significant where p

Read more

Summary

Introduction

The state of pregnancy is associated with many complex metabolic alterations in order to meet the energetic demands of the developing fetus and ensure deposition of adequate energy substrate stores to contribute to neonatal nutritional requirements following birth. Our knowledge of alterations in these metabolic processes during pregnancy is generated from experimental studies in small populations that have relied on specific nutritional biomarkers to gain an understanding of individual nutrient metabolism [1,2,3,4,5]. There is general consensus that the normal progressive insulin resistance of pregnancy is an underlying driver for many of the observed metabolic adaptations, our understanding remains incomplete regarding the specific nutrients, mechanisms and hormonal processes involved

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call