Abstract
Repeated measurements analysis of variance – simultaneous component analysis (ASCA) has been developed to handle complex longitudinal omics datasets and combine novel information with existing data. Herein, we aimed at applying ASCA to 64 liver proteomes collected at 4-time points (day −21, +1, +28, and + 63 relative to parturition) from 16 Holstein cows treated from 9 wk. antepartum to 9 wk. postpartum (PP) with coconut oil (CTRL) or a mixture of essential fatty acids (EFA) and conjugated linoleic acid (CLA) (EFA + CLA). The ASCA modeled 116, 43, and 97 differentially abundant proteins (DAP) during the transition to lactation, between CTRL and EFA + CLA, and their interaction, respectively. Time-dependent DAP were annotated to pathways related to the metabolism of carbohydrates, FA, and amino acid in the PP period. The DAP between FA and the interaction effect were annotated to the metabolism of xenobiotics by cytochrome P450, drug metabolism - cytochrome P450, retinol metabolism, and steroid hormone biosynthesis. Collectively, ASCA provided novel information on molecular markers of metabolic adaptations and their interactions with EFA + CLA supplementation. Bioinformatics analysis suggested that supplemental EFA + CLA amplified hepatic FA oxidation; cytochrome P450 was enriched to maintain metabolic homeostasis by oxidation/detoxification of endogenous compounds and xenobiotics. SignificanceThis report is among the first ones applying repeated measurement analysis of variance–simultaneous component analysis (ASCA) to deal with longitudinal proteomics results. ASCA separately identified differentially abundant proteins (DAP) in ‘transition time’, ‘between fatty acid treatments’, and ‘their interaction’. We first identified the molecular signature of hepatic metabolic adaptations during postpartum negative energy balance; the enriched pathways were well-known pathways related to mobilizing fatty acids (FA) and amino acids to support continuous energy production through fatty acid oxidation, TCA cycle, and gluconeogenesis. Some of the DAP were not previously reported in transition dairy cows. Secondly, we provide novel information on the mechanisms by which supplemented essential FA and conjugated linoleic acids interact with hepatic metabolism. In this regard, FA amplified hepatic detoxifying and oxidation capacity through ligand activation of nuclear receptors. Finally, we briefly compared the strengths and weaknesses of the ASCA model with PLS-DA and outlined why these methods are complementary.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.