Abstract

 Background: Longitudinal joint models consider the variation caused by repeated measurements over time as well as the association among the response variables. In the case of combining binary and continuous response variables using generalized linear mixed models, integrating over a normally distributed random intercept in the binary logistic regression sub-model does not yield to a closed form. In this paper, we assessed the impact of assuming a Bridge distribution for the random intercept in the binary logistic regression submodel and compared the results to that of normal distribution.
 Method: The response variables are combined through correlated random intercepts. The random intercept in the continuous outcome submodel follows a normal distribution. The random intercept in the binary outcome submodel follows a normal or Bridge distribution. The estimations were carried out using a likelihood-based approach in direct and conditional joint modeling approaches. To illustrate the performance of the models, a simulation study was conducted
 Results: Based on the simulation results and regardless of the joint modeling approach, the models with a Bridge distribution for the random intercept of the binary outcome resulted in a slightly more accurate estimations and better performance.
 Conclusion: In addition to the fact that assuming a bridge distribution for the random intercept in binary logistic regression yields to the same interpretation of parameter estimates in marginal and conditional forms, our study revealed that even if the random intercept of binary logistic regression is normally distributed, assuming a Bridge distribution in the model will result in more accurate results. 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.