Abstract

It is demonstrated experimentally that for copper ion lines laser excitation in a longitudinal hollow cathode discharge (HCD) an optimum current density (approximately 1 A/cm<sup>2</sup>) exists. Above this value a saturation and even decrease of the laser power is observed. Due to the axial inhomogeneity of the longitudinal discharge the possibility to increase the laser power by increasing the cathode length is also limited. To determine the proper cathode length for a sputtering copper ion laser, the axial current and spectral lines intensity distribution at conditions typical for laser oscillation are measured, showing a maximum at the anode ends of the cathode. Numerical modeling for exactly the same discharge conditions and tube design is also performed. The results are compared with the measured data and reasonable agreement is reached. Based on the results of the experiments and calculations we have demonstrated that the most efficient laser oscillation is achieved whenthe laser active volume comprises a series of anodes and cathodes, each cathode with a length of approximately 1 &divide; 2 cm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.