Abstract

Flow characteristics of liquid films vertically falling along the outer wall of a circular tube without concurrent gas flow are experimentally studied, and attention is given to the longitudinally developing liquid film flow in the flow direction. Flow measurements are carried out by the methods of needle contact and electric capacity, and the obtained data are statistically processed. There exists a definite difference in flow characteristics such as wave motion patterns, film thicknesses, critical Reynolds number, and so on, depending strongly on the longitudinal distance in the flow direction as well as the liquid film Reynolds number. Measured probability distributions of interfacial waves can be well expressed by the functions of probability distribution statistically well-known as normal, logarithmic normal and gamma distributions. In terms of these functions, interfacial wave patterns are definitely classified over the whole experimental flow regime. As a rule, interfacial wave motion proceeds vigorously with increases of the longitudinal distance and Reynolds number; however, there exists a flow condition that wave fluctuation never grows up but declines regardless of an increase of Reynolds number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call