Abstract

Trinucleon longitudinal response functions R_L(q,omega) are calculated for q values up to 500 MeV/c. These are the first calculations beyond the threshold region in which both three-nucleon (3N) and Coulomb forces are fully included. We employ two realistic NN potentials (configuration space BonnA, AV18) and two 3N potentials (UrbanaIX, Tucson-Melbourne). Complete final state interactions are taken into account via the Lorentz integral transform technique. We study relativistic corrections arising from first order corrections to the nuclear charge operator. In addition the reference frame dependence due to our non-relativistic framework is investigated. For q less equal 350 MeV/c we find a 3N force effect between 5 and 15 %, while the dependence on other theoretical ingredients is small. At q greater equal 400 MeV/c relativistic corrections to the charge operator and effects of frame dependence, especially for large omega, become more important. In comparison with experimental data there is generally a rather good agreement. Exceptions are the responses at excitation energies close to threshold, where there exists a large discrepancy with experiment at higher q. Concerning the effect of 3N forces there are a few cases, in particular for the R_L of 3He, where one finds a much improved agreement with experiment if 3N forces are included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.