Abstract

A comprehensive investigation of propagation of new longitudinal electro-kinetic modes and novel properties introduced due to presence of negatively charged colloids in semiconductor plasma is presented. By employing the multi-fluid balance equations, a compact dispersion relation for the cases in which wave phase velocity is either larger or smaller than electron thermal velocity is derived. This dispersion relation is used to study wave phenomena and electro-kinetic mode instability numerically. We find important modifications in electro-kinetic branch as well as the existence of new modes of propagation in colloids laden semiconductor plasma. The results of this investigation should be useful in understanding the characteristics of longitudinal electro-kinetic wave in colloids laden semiconductor plasmas whose main constituents are electrons, holes and negatively charged colloids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call