Abstract

Fluctuations in the initial transverse energy-density distribution lead to anisotropic flows as observed in central high-energy heavy-ion collisions. Studies of longitudinal fluctuations of the anisotropic flows can shed further light on the initial conditions and dynamical evolution of the hot quark-gluon matter in these collisions. Correlations between anisotropic flows with varying pseudorapidity gaps in Pb+Pb collisions at the CERN Large Hadron Collider are investigated using both an event-by-event (3+1)-D ideal hydrodynamical model with fluctuating initial conditions and the a multiphase transport (AMPT) Monte Carlo model for high-energy heavy-ion collisions. Anisotropic flows at different pseudorapidities are found to become significantly decorrelated with increasing pseudo-rapidity gaps due to longitudinal fluctuations in the initial states of heavy-ion collisions. The longitudinal correlation of the elliptic flow shows a strong centrality dependence while the correlation of the triangular flow is independent of the centrality. Longitudinal fluctuations as a source of the decorrelation are further shown to consist of a twist or gradual rotation in flow angles between the forward and backward direction and additional fluctuations on top of the twist. Within the AMPT model, longitudinal correlations of anisotropic flows are also found to depend on the value of partonic cross sections. The implicatiosn of constraining the initial conditions and shear viscosity to entropy density ratio of the partonic matter in high-energy heavy-ion collisions are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call