Abstract

Enteroaggregative, enteropathogenic, and enterotoxigenic Escherichia coli contribute significantly to the burden of diarrheal infections particularly in developing countries. Antibiotic resistance is increasingly common among bacterial pathogens including pathogenic E. coli. We assessed the relationship between pathogenic E. coli carriage and resistance to six antibiotics in E. coli isolated from young children in rural Tanzania. We surveyed temporal stability in antibiotic resistance in 2492 E. coli isolated from fecal samples obtained from young children in rural Tanzania collected over a 6 months period. Approximately half of the 377 children sampled were exposed to an azithromycin mass treatment program for trachoma control and half resided in control villages. Children were sampled at baseline, 1-, 3-, and 6 months following azithromycin treatment. We compared resistance to six antibiotics in pathogenic and non-pathogenic strains at the population level, within fecal specimens, and within individuals over time using chi-square tests, paired odds ratios, and logistic regression, respectively. Resistance to ampicillin and trimethoprim/sulfamethoxazole was highly prevalent (>65%). Resistance to 5 of 6 antibiotics tested and multi-drug resistance occurred more frequently in pathogenic isolates (p ≤ 0.001) within fecal specimens and overall. Azithromycin mass treatment exposure was significantly associated with increased odds of carriage of isolates resistant to erythromycin (OR 3.64, p < 0.001) and trimethoprim/sulfamethoxazole (OR 1.60, p < 0.05). Pathogenic isolates were approximately twice as likely to be resistant to erythromycin, ampicillin, or trimethoprim/sulfamethoxazole compared to non-pathogenic isolates from the same fecal specimen. The potential linkage between resistance and virulence in E. coli suggests hygiene and sanitation interventions aimed at reducing disease burden could play a role in controlling transmission of antibiotic resistance.

Highlights

  • Diarrhea is estimated to be a leading cause of death globally among children under 5 years of age (Global Burden of Disease Pediatrics Collaboration et al, 2016)

  • We investigated the relationship between diarrheagenic Escherichia coli (DEC) carriage and resistance to six antibiotics in E. coli isolated from young children in rural Tanzania half of whom were exposed to mass drug treatment with azithromycin (MDA) in the context of a trachoma elimination program

  • We collected 1151 rectal swabs and 158 diarrheal stools from 377 individual children; 2492 E. coli isolates were recovered from these specimens (Figure 1)

Read more

Summary

Introduction

Diarrhea is estimated to be a leading cause of death globally among children under 5 years of age (Global Burden of Disease Pediatrics Collaboration et al, 2016). Half of these deaths occur in sub-Saharan Africa. Great strides have been made in reducing mortality, due in part to implementation of oral rehydration therapy and appropriate feeding practices during illness, enteric infections are still a significant cause of morbidity worldwide (Fischer Walker et al, 2012). DEC are identified by specific virulence factors capable of causing a broad array of gastrointestinal illness. Enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC) are responsible for the majority of DEC diarrheal infections in Tanzania (Vargas et al, 2004; Moyo et al, 2007; Platts-Mills et al, 2015)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.