Abstract

Abstract Chiral optical forces exhibit opposite signs for the two enantiomeric versions of a chiral molecule or particle. If large enough, these forces might be able to separate enantiomers all optically, which would find numerous applications in different fields, from pharmacology to chemistry. Longitudinal chiral forces are especially promising for tackling the challenging scenario of separating particles of realistically small chiralities. In this work, we study the longitudinal chiral forces arising in dielectric integrated waveguides when the quasi-TE and quasi-TM modes are combined as well as their application to separate absorbing and non-absorbing chiral particles. We show that chiral gradient forces dominate in the scenario of beating of non-denegerate TE and TM modes when considering non-absorbing particles. For absorbing particles, the superposition of degenerate TE and TM modes can lead to chiral forces that are kept along the whole waveguide length. We accompany the calculations of the forces with particle tracking simulations for specific radii and chirality parameters. We show that longitudinal forces can separate non-absorbing chiral nanoparticles in water even for relatively low values of the particle chirality and absorbing particles with arbitrarily low values of chirality can be effectively separated after enough interaction time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.