Abstract

The human body has the ability to influence its sensation of pain by modifying the transfer of nociceptive information at the spinal level. This modulation, known as descending pain inhibition, is known to originate supraspinally and can be activated by a variety of ways including positive mental imagery. However, its exact mechanisms remain unknown. We investigated, using a longitudinal fMRI design, the brain activity leading up and in response to painful electrical stimulation when applying positive mental imagery before and after undergoing a previously established RIII-feedback paradigm. Time course analysis of the time preceding painful stimulation shows increased haemodynamic activity during the application of the strategy in the PFC, ACC, insula, thalamus, and hypothalamus. Time course analysis of the reaction to painful stimulation shows decreased reaction post-training in brainstem and thalamus, as well as the insula and dorsolateral PFC. Our work suggests that feedback training increases activity in areas involved in pain inhibition, while simultaneously decreasing the reaction to painful stimuli in brain areas related to pain processing, which points to an activation of decreased spinal nociception. We further suggest that the insula and the thalamus may play a more important role in pain modulation than previously assumed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.