Abstract

In the United States over one-third of the population, including children and adolescents, are overweight or obese. Despite the prevalence of obesity, few studies have examined how food cravings and the ability to regulate them change throughout development. Here, we addressed this gap in knowledge by examining structural brain and behavioral changes associated with regulation of craving across development. In a longitudinal design, individuals ages 6–26 completed two structural scans as well as a behavioral task where they used a cognitive regulatory strategy to decrease the appetitive value of foods. Behaviorally, we found that the ability to regulate craving improved with age. Neurally, improvements in regulatory ability were associated with cortical thinning in medial and lateral prefrontal cortex. We also found that models with cortical thickness measurements and age chosen by a lasso-based variable selection method could predict an individual’s regulation behavior better than age and other behavioral factors alone. Additionally, when controlling for age, smaller ventral striatal volumes were associated with higher body mass index and predicted greater increases in weight two years later. Taken together, these results demonstrate a role for structural brain changes in supporting the ability to resist cravings for appetitive foods across development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.