Abstract

Implementation of low-energy injection schemes in race-track microtron (RTM) designs requires a better understanding of the longitudinal beam dynamics. Unlike the high-energy case a low-energy beam slips in phase with respect to the accelerating field phase so that the standard notion of synchronous particle is not applicable. In the article, we generalize the concept of synchronous particle for the case of non-relativistic energies. An analytic approach for the description of the synchronous phase slip is developed and explicit, though approximate, formulas which allow to determine the equilibrium injection phase and to fix the parameters of the accelerator are derived. The approximation can be improved in a systematic way by calculating higher-order corrections. The precision of the analytic approach is checked by direct numerical computations and is shown to be quite satisfactory. Explicit examples of injection schemes and fixing of RTM global parameters are presented. We also address the issue of stability of synchrotron oscillations around the generalized synchronous trajectory and introduce the notion of critical energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.