Abstract

Refractive errors are common, especially in children and adolescents, leading to global health issues, academic implications and economic costs. Circadian rhythm and sleep habits may play a role. The study included 1130 children from the EDEN birth-cohort. Data were collected through parental questionnaires at age 2 and 5 for sleep duration and timing, and at age 5 for refractive error. At 5 years, 20.4% were prescribed glasses (2% for myopia, 11.9% for hyperopia and 6.8% for unknown reason). Children slept on average (SD) 11h05/night (± 30 min) and 10h49/night (± 48 min) at age 2 and 5, respectively. Average bedtime and midsleep was 8.36 pm (± 30 min), 2.06 am (± 36 min), and 8.54 pm (± 30 min), 2.06 am (± 24 min) at age 2 and 5, respectively. A U-shaped association was observed between sleep duration at age 2 and eyeglass prescription at age 5. Later midsleep and bedtime at age 2 were associated with an increased risk of eyeglass prescription at age 5. Associations became borderline significant after adjustment for confounding factors. Sleep duration and timing at age 2 were associated with subsequent refractive errors in preschoolers from general population. Sleep hygiene might be a target for refractive errors prevention.

Highlights

  • Emmetropization is an active mechanism that is still imperfectly understood by the scientific community

  • No association was observed between daily time spent outdoors and refractive errors (Supplementary Tables). In this first longitudinal study performed among preschoolers, we found a U-shaped association between sleep duration at age 2 and eyeglass prescription for refractive errors at age 5, and a linear positive association between midsleep at age 2 and eyeglass prescription at age 5

  • Our results showed no significant association with myopia or hyperopia, but we were limited by the low proportion of cases within the studied cohort

Read more

Summary

Introduction

Emmetropization is an active mechanism that is still imperfectly understood by the scientific community. Smith et al did not find an association between constant lighting and myopia on ­primates[17] To extend these results, number of studies on humans have analyzed the association between night-light exposure. It was shown on baby monkeys that axial eye length increases during the day and reduces during the night (but growing overall in the long-term) and that this circadian rhythm was inverted during ­adolescence[31]. Studies in animals suggested that ocular diurnal rhythms (including axial length and choiroidal thickness) may have important implication in the eye growth regulation and in the development of refractive errors, especially myopia, when they are ­desynchronized[33,34]. One recent meta-analysis of 542,934 subjects of European ancestry identified some genetic factors controlling circadian rhythm and pigmentation for being responsible for refractive errors and m­ yopia[35]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.