Abstract

A dielectric-loaded circular waveguide structure is a potential high-gradient linear wake-field accelerator. A complete solution is given for the longitudinal electric and magnetic fields excited by a $\ensuremath{\delta}$ function and a Gaussian charge distribution moving parallel to the guide axis. The fields are then given in the limit of particle velocity equal to the speed of light. Example calculations are given for a structure with inner radius of 2 mm, outer radius of 5 mm, dielectric constant of 3, and total charge of 100 nC. Peak wake fields in excess of 200 MV/m are found. Azimuthal modes 0 and 1 are investigated for the particular interest of acceleration and deflection problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.