Abstract

This paper presents a novel, long-type of magnetostrictive and piezoelectric laminate composite design in which the layers are, respectively, magnetized/poled along their length axes, and a theory for modeling its behavior. Using piezoelectric and magnetostrictive constitutive equations, and an equation of motion, a magneto-elastoelectric bieffect equivalent circuit is developed. The circuit is used to predict the longitudinal and transverse magnetoelectric (ME) voltage coefficients of our Terfenol-D/Pb(Zr1-xTix)O3 laminate design. It is found that the longitudinal ME voltage coefficient is significantly higher (approximately 5x) than the transverse one, and that our new laminate design has significantly higher ME voltage coefficients under small applied direct current (DC) magnetic bias fields than designs reported previously by other groups. Experimental values were found to be coincidental with predicted ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.