Abstract

Latitude profiles of the ion and electron temperatures and total ion concentration across the equatorial region near 800 km altitude are routinely obtained from Defense Meteorological Satellite Program (DMSP) spacecraft. We have examined these profiles at 2100 hours local time to discover the influences of field‐aligned plasma transport induced by F region neutral winds. Such dependencies are readily seen by contrasting observations at different seasons and different longitudes distinguished by different magnetic declinations. These data show strong evidence for adiabatic heating produced by interhemispheric plasma transport. This heating manifests itself as a local temperature maximum that appears in the winter hemisphere during the solstices and is generally absent during equinox. A longitudinal variation in the appearance of this maximum is consistent with the roles of meridional and zonal winds in modulating the field‐aligned plasma velocities. The data also show a local temperature minimum near the dip equator. However, it is not so easy to attribute this minimum to adiabatic cooling since transport of plasma from below and the latitude variation in the flux tube content may also produce such a minimum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.