Abstract

A selection experiment for reduced residual feed intake (RFI) in Yorkshire pigs consisted of a line selected for lower RFI (LRFI) and a random control line (CTRL). Longitudinal measurements of daily feed intake (DFI) and body weight (BW) from generation 5 of this experiment were used. The objectives of this study were to evaluate the use of random regression (RR) and nonlinear mixed models to predict DFI and BW for individual pigs, accounting for the substantial missing information that characterizes these data, and to evaluate the effect of selection for RFI on BW and DFI curves. Forty RR models with different-order polynomials of age as fixed and random effects, and with homogeneous or heterogeneous residual variance by month of age, were fitted for both DFI and BW. Based on predicted residual sum of squares (PRESS) and residual diagnostics, the quadratic polynomial RR model was identified to be best, but with heterogeneous residual variance for DFI and homogeneous residual variance for BW. Compared to the simple quadratic and linear regression models for individual pigs, these RR models decreased PRESS by 1% and 2% for DFI and by 42% and 36% for BW on boars and gilts, respectively. Given the same number of random effects as the polynomial RR models, i.e., two for BW and one for DFI, the non-linear Gompertz model predicted better than the polynomial RR models but not as good as higher order polynomial RR models. After five generations of selection for reduced RFI, the LRFI line had a lower population curve for DFI and BW than the CTRL line, especially towards the end of the growth period.

Highlights

  • Feed efficiency is a very important economic trait in swine production

  • For production purposes, feed efficiency is usually defined as the ratio of average daily body weight gain (ADG) to average daily feed intake (ADFI)

  • Random regression models are a compromise between estimates based only on individual pig’s data and an overall estimate across all pigs

Read more

Summary

Introduction

Feed efficiency is a very important economic trait in swine production. For production purposes, feed efficiency is usually defined as the ratio of average daily body weight gain (ADG) to average daily feed intake (ADFI). Longitudinal DFI records are often summarized as ADFI for the further analysis. Random regression models (Schaeffer and Dekkers, 1994) are other suitable option for analysis of longitudinal data on DFI and BW. Such models use data from all pigs simultaneously and allow estimation of individual and population curves. Schaeffer (2004) presented a thorough review on the application of random regression (RR) models in animal breeding. As one of the first applications to data other than milk production in cattle, Andersen and Pedersen (1996) applied RR models to analyze growth and food intake curves for pigs.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call