Abstract

The purpose of this study was to quantitatively assess the longitudinal acquisition repeatability of MRI radiomics features in a three-dimensional (3D) T1-weighted (T1W) TSE sequence via a well-controlled prospective phantom study. Thirty consecutive daily datasets of an ACR-MRI phantom were acquired on two 1.5T MRI simulators using a 3D T1W TSE sequence. Images were blindly segmented by two observers. Post-acquisition processing was minimized but an intensity discretization (fixed bin size of 25). One hundred and one radiomics features (shape n=12; first order n=16; texture n=73) were extracted. Longitudinal repeatability of each feature was evaluated by Pearson correlation and coefficient of variance (CV68% ). Interobserver feature value agreement was also quantified using intraclass correlation coefficient (ICC) and Bland-Altman analysis. A most repeatable radiomics feature set on both scanners was determined by feature coefficient of variance (CV68% <5%), ICC (>0.75), and the ratio of the interobserver difference to the interobserver mean δ<5%. No trend of radiomics feature value changed with time. Longitudinal feature repeatability CV68% ranged 0.01-38.60% (mean/median: 12.5%/9.9%), and 0.01-40.47%, (8.49%/7.34%) on the scanners A and B. Shape features exhibited significantly better repeatability than first-order and texture features (all P<0.01). Significant longitudinal repeatability difference was observed in texture features (P<0.001) between the two scanners, but not in shape and first-order features (P>0.30). First-order and texture features had smaller interobserver-dependent variation than acquisition-dependent variation. They also showed good interobserver agreement on both scanners (A:ICC=0.80±0.23; B:ICC=0.80±0.22), independent of acquisition repeatability. The repeatable radiomics features in common on both scanners, including 12 shape features, 0 first-order features, and 3 texture features, were determined as the most repeatable MRI radiomics feature set. Radiomics features exhibited heterogeneous longitudinal repeatability, while the shape features were the most repeatable, in this phantom study with a 3D T1W TSE acquisition. The most repeatable radiomics feature set derived in this study should be helpful for the selection of reliable radiomics features in the future clinical use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.