Abstract

We report on a simple, compact, and robust 780 nm distributed Bragg reflector laser with subkilohertz intrinsic linewidth. An external cavity with optical path length of 3.6 m, implemented with an optical fiber, reduces the laser frequency noise by several orders of magnitude. At frequencies above 100 kHz the frequency noise spectral density is reduced by over 33 dB, resulting in an intrinsic Lorentzian linewidth of 300 Hz. The remaining low-frequency noise is easily removed by stabilization to an external reference cavity. We further characterize the influence of feedback power and current variation on the intrinsic linewidth. The system is suitable for experiments requiring a tunable laser with narrow linewidth and low high-frequency noise, such as coherent optical communication, optical clocks, and cavity QED experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.