Abstract

Under manufacturing process variation, a path through a fault site is called longest for delay test if there exists a process condition under which the path has the maximum delay among all paths through that fault site. There are often multiple longest paths for each fault site in the circuit, due to different process conditions. To detect the smallest delay fault, it is necessary to test all longest paths through the fault site. However, previous methods are either inefficient or their results include too many paths that are not longest.This paper presents an efficient method to generate the longest path set for delay test under process variation. To capture both structural and systematic process correlation, we use linear delay functions to express path delays under process variation. A novel path-pruning technique is proposed to discard paths that are not longest, resulting in a significantly reduction in the number of paths compared with the previous best method. The new method can be applied to any process variation as long as its impact on delay is linear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.