Abstract
We consider the longest common subsequence (LCS) problem with the restriction that the common subsequence is required to consist of at least k length substrings. First, we show an O(mn) time algorithm for the problem which gives a better worst-case running time than existing algorithms, where m and n are lengths of the input strings. Furthermore, we mainly consider the LCS in at least k length order-isomorphic substrings problem. We show that the problem can also be solved in O(mn) worst-case time by an easy-to-implement algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.