Abstract

Controlled environment crop production recommendations often use the daily light integral (DLI) to quantify the light requirements of specific crops. Sole-source electric lighting, used in plant factories, and supplemental electric lighting, used in greenhouses, may be required to attain a specific DLI. Electric lighting is wasteful if not provided in a way that promotes efficient photochemistry. The quantum yield of photosystem II (ΦPSII), the fraction of absorbed light used for photochemistry, decreases with increasing photosynthetic photon flux density (PPFD). Thus, we hypothesized that the daily photochemical integral (DPI), the total electron transport through photosystem II (PSII) integrated over 24 h, would increase if the same DLI was provided at a lower PPFD over a longer photoperiod. To test this, ΦPSII and the electron transport rate (ETR) of lettuce (Lactuca sativa ‘Green Towers’) were measured in a growth chamber at DLIs of 15 and 20 mol m−2 d−1 over photoperiods ranging from 7 to 22 h. This resulted in PPFDs of 189 to 794 μmol m−2 s−1. The ΦPSII decreased from 0.67 to 0.28 and ETR increased from 55 to 99 μmol m−2 s−1 as PPFD increased from 189 to 794 μmol m−2 s−1. The DPI increased linearly as the photoperiod increased, but the magnitude of this response depended on DLI. With a 7-h photoperiod, the DPI was ≈2.7 mol m−2 d−1, regardless of DLI. However, with a 22-h photoperiod, the DPI was 4.54 mol m−2 d−1 with a DLI of 15 mol m−2 d−1 and 5.78 mol m−2 d−1 with a DLI of 20 mol m−2 d−1. Our hypothesis that DPI can be increased by providing the same DLI over longer photoperiods was confirmed.

Highlights

  • The controlled environment agriculture industry, including indoor plant factories and greenhouses, in the United States (U.S.) spends $600 million annually on the electricity required for horticultural lighting [1]

  • Our goal was to quantify the effect of photosynthetic photon flux density (PPFD) and photoperiod on daily photochemical integral (DPI), while maintaining a static daily light integral (DLI)

  • We found a substantially greater increase in DPI with longer photoperiods at a DLI of 20 mol m−2 d−1, compared a DLI of 15 mol m−2 d−1

Read more

Summary

Introduction

The controlled environment agriculture industry, including indoor plant factories and greenhouses, in the United States (U.S.) spends $600 million annually on the electricity required for horticultural lighting [1] To reduce these energy costs, it is important to understand how efficiently plants use the light they receive. The energy from photons absorbed by photosynthetic pigments in plants has one of three fates: (1) drive the light reactions of photosynthesis (photochemistry), (2) dissipated as heat (non-photochemical quenching of chlorophyll fluorescence), or (3) re-emitted as light from chlorophyll a (chlorophyll fluorescence). These three fates compete, an increase in one process must be accompanied by a decrease in one or both of the other processes [4,5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call