Abstract

This paper deals with the experimental and theoretical studies of abnormal properties of terephthalic acid (TAC) and phthalic acid (PAC) crystals manifested in the H/D isotopic exchange. The widely utilized deuteration routine appeared to be insufficiently effective in the case of the h6-TAC isotopomer. In the case of the d4-TAC derivative the isotopic exchange process occurred noticeably more effectively. In contrast, both isotopomers of PAC, h6 and d4, appeared much more susceptible for deuteration. A theoretical model was elaborated describing “long-distance” dynamical co-operative interactions involving hydrogen bonds in TAC and PAC crystals. The model assumes extremely strong dynamical co-operative interactions of hydrogen bonds from the adjacent (COOH)2 cycles. This leads to an additional stabilization of h6–TAC molecular chains. The interaction energies affect the chemical equilibrium of the H/D isotopic exchange. The model predicts a differentiated influence of the H and D atoms linked to the aromatic rings on to the process. In this approach the totally-symmetric CH bond stretching vibrations and the proton stretching totally symmetric vibrations couple with the π-electronic motions. It was also shown that identical hydrogen isotope atoms, H or D, in whole TAC molecules, noticeably enlarge the energy of the dynamical co-operative interactions in the crystals, in contrast to the case of different hydrogen isotopes present in the carboxyl groups and linked to the aromatic rings. The “long-distance” dynamical co-operative interactions in PAC crystals were found of a minor importance due to the electronic properties of PAC molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call