Abstract

A new regime of the sliding-mode propagation of microwave radiation in plasma waveguides in atmospheric air is studied both experimentally and theoretically. The mechanisms of air photoionization and relaxation under propagation of 25-ns pulses of KrF laser are investigated. It is shown that a tubular plasma waveguide of large radius (much larger than wavelength of the microwave signal) can be produced in the photoionization of air molecules by 248-nm radiation of KrF-laser. We experimentally demonstrate the laser-enhanced transfer of 38-GHz microwave signal to a distance of at least 60 m. The mechanism of the transfer is determined by total internal reflection of the signal on the optically less dense wall of the plasma waveguide. Analytical and numerical simulations performed for various waveguide radii and microwave radiation wavelengths show that the propagation length increases with decrease in the wavelength reaching a few kilometers for submillimeter waves. Medium-size KrF laser facility with about 400-J energy in a train of picosecond pulses is suggested for the directed transfer of microwave radiation to 1-km distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call