Abstract

Flying-foxes (Pteropodidae) are large bats capable of long-distance flight. Many species are threatened; some are considered pests. Effective conservation and management of flying-foxes are constrained by lack of knowledge of their ecology, especially of movement patterns over large spatial scales. Using satellite telemetry, we quantified long-distance movements of the grey-headed flying-fox Pteropus poliocephalus among roost sites in eastern Australia. Fourteen adult males were tracked for 2–40 weeks (mean 25 weeks). Collectively, these individuals utilised 77 roost sites in an area spanning 1,075 km by 128 km. Movement patterns varied greatly between individuals, with some travelling long distances. Five individuals travelled cumulative distances >1,000 km over the study period. Five individuals showed net displacements >300 km during one month, including one movement of 500 km within 48 hours. Seasonal movements were consistent with facultative latitudinal migration in part of the population. Flying-foxes shifted roost sites frequently: 64% of roost visits lasted <5 consecutive days, although some individuals remained at one roost for several months. Modal 2-day distances between consecutive roosts were 21–50 km (mean 45 km, range 3–166 km). Of 13 individuals tracked for >12 weeks, 10 moved >100 km in one or more weeks. Median cumulative displacement distances over 1, 10 and 30 weeks were 0 km, 260 km and 821 km, respectively. On average, over increasing time-periods, one additional roost site was visited for each additional 100 km travelled. These findings explain why culling and relocation attempts have had limited success in resolving human-bat conflicts in Australia. Flying-foxes are highly mobile between camps and regularly travel long distances. Consequently, local control actions are likely to have only temporary effects on local flying-fox populations. Developing alternative methods to manage these conflicts remains an important challenge that should be informed by a better understanding of the species’ movement patterns.

Highlights

  • Many flying vertebrates can travel relatively long distances in a few days [1,2,3,4,5]

  • Study Species Pteropus poliocephalus is endemic to coastal eastern Australia, with a distribution extending from central Queensland (21uS) to Melbourne, Victoria (38uS) [28]

  • The statistical quantification of the species’ movement patterns shows that (i) individuals move among roost sites far more frequently than previously reported; (ii) individuals are capable of rapid sustained long-distance flight and (iii) movements vary considerably between individuals and within individuals over time

Read more

Summary

Introduction

Many flying vertebrates can travel relatively long distances in a few days [1,2,3,4,5]. Flying-foxes feed at night on nectar and/or fruit, and roost during the day, often in large aggregations [6,7]. Their patterns of movement and roost usage are, in most cases, poorly understood [6,7,8], even though a number of flying-fox species are the subject of conservation or management programs [8,9]. Radio-tracking and limited satellite telemetry studies have revealed complex patterns of movement of flying-foxes between roosts, including long-distance movements in some species [4,10,11,12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call