Abstract

Saturated fatty acids (SFAs), significant components of enteral and parenteral formulations, have been linked to cardiovascular complications. However, the effect of SFAs upon vascular inflammation is less clear. Endothelial cells (EC) play an important role in the acute inflammatory responses. We, therefore, evaluated the acute effects of different chain-length SFAs upon EC functions. Endothelial cells were cultured with various SFAs. Growth and cytotoxicity were determined by WST-1 assay. Apoptosis and pro-inflammatory adhesion molecule (ICAM-1) expression was assayed using flow cytometry. Activation of NF-kappaB was analyzed using western blot analysis. Long-chain SFAs (C14:0-C20:0) inhibited EC growth in a chain-length dependent manner. Medium-chain SFAs (C6:0-C12:0) did not significantly affect EC growth. In contrast, the short-chain SFA (C4:0) stimulated cellular growth. Stearic acid induced significantly more EC apoptosis and necrosis than palmitic acid or myristic acids. Stearic acid (>10muM) treatment also significantly increased ICAM-1 expression. Stearic acid's pro-inflammatory response was confirmed by phosphorylation of IkappaB-alpha and NF-kappaB in a dose dependent manner. Long-chain SFAs can induce pro-inflammatory responses and significantly impact growth and viability of EC. Our data suggest that the presence of long-chain SFAs in parenteral formulations may have harmful effects on the vascular system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call