Abstract

In this paper we evaluate the enhancement of nonequilibrium concentration fluctuations induced by the Soret effect when a binary fluid layer is subjected to a stationary temperature gradient. Starting from the fluctuating Boussinesq equations for a binary fluid in the large-Lewis-number approximation, we show how one can obtain an exact expression for the nonequilibrium structure factor in the long-wavelength limit for a fluid layer with realistic impermeable and no-slip boundary conditions. A numerical calculation of the wave-number dependence of the nonequilibrium enhancement and of the corresponding decay rate of the concentration fluctuations is also presented. Some physical consequences of our results are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.