Abstract

Collisionless shocks in turbulent space plasmas accelerate particles by the Fermi mechanism to ultrarelativistic energies. The interaction of accelerated particles with the plasma inflow produces extended supersonic MHD flows of multicomponent plasma. We investigate the instabilities of a flow of three-component turbulent plasma with relativistic particles against long-wavelength perturbations with scales larger than the accelerated particle transport mean free path and the initial turbulence scales. The presence of turbulence allows us to formulate the system of single-fluid equations, the equation of motion for the medium as a whole, and the induction equation for the magnetic field with turbulent magnetic and kinematic viscosities. The current of accelerated particles enters into the induction equation with an effective magnetic diffusion coefficient. We have calculated the local growth rates of the perturbations related to the nonresonant long-wavelength instability of the current of accelerated particles for MHD perturbations in the WKB approximation. The amplification of long-wavelength magnetic field perturbations in the flow upstream of the shock front can affect significantly the maximum energies of the particles accelerated by a collisionless shock and can lead to the observed peculiarities of the synchrotron X-ray radiation in supernova remnants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.