Abstract
We revisit an ancient paper (Auriault and Bonnet, 1985) which points out the existence of cut-off frequencies for long acoustic wavelength in high-contrast elastic composite materials, i.e. when the wavelength is large with respect to the characteristic heterogeneity length. The separation of scales enables the use of the method of multiple scale expansions for periodic structures, a powerful upscaling technique from the heterogeneity scale to the wavelength scale. However, the results remain valid for non-periodic composite materials which show a Representative Elementary Volume (REV). The paper extends the previous investigations to three-component composite materials made of hard inclusions, coated with a soft material, both of arbitrary geometry, and embedded in a connected stiff material. The equivalent macroscopic models are rigorously established as well as their domains of validity. Provided that the stiffness contrast within the soft and the connected stiff materials is of the order of the squared separation of scales parameter, it is demonstrated (i) that the propagation of long wave may coincide with the resonance frequencies of the hard inclusions/soft material system and (ii) that the macroscopic model presents a series of cut-off frequencies given by an eigenvalue problem for the resonating domain in the cell. These results are illustrated in the case of stratified composites and the possible microstructures of heterogeneous media in which the inner dynamics phenomena may occur are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.