Abstract

Hall plasma devices with electron E × B drift are subject to a class of long wavelength instabilities driven by the electron current, gradients of plasma density, temperature, and magnetic field. In the first companion paper [Frias et al., Phys. Plasmas 19, 072112 (2012)], the theory of these modes was revisited. In this paper, we apply analytical theory to show that modern Hall thrusters exhibit azimuthal and axial oscillations in the frequency spectrum from tens KHz to few MHz, often observed in experiments. The azimuthal phase velocity of these modes is typically one order of magnitude lower than the E × B drift velocity. The growth rate of these modes scales inversely with the square root of the ion mass, ∼1/mi. It is shown that several different thruster configurations share the same common feature: the gradient drift instabilities are localized in two separate regions, near the anode and in the plume region, and absent in the acceleration region. Our analytical results show complex interaction of pl...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call