Abstract

We investigate the long-wave Marangoni instability in a binary-liquid layer in the limit of a small Biot number B. The surface deformation and the Soret effect are both taken into account. It is shown that the problem is characterized by two distinct asymptotic limits for the disturbance wave number k, k∼B1∕4 and k∼B1∕2, which are caused by the action of two instability mechanisms, namely, the thermocapillary and solutocapillary effects. The asymptotic limit of k∼B1∕2 is novel and is not known for pure liquids. A diversity of instability modes is revealed. Specifically, a new long-wave oscillatory mode is found for sufficiently small values of the Galileo number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.