Abstract

The stability of a system of two thin liquid films under AC electroosmotic flow is studied using linear stability analysis for long-wave disturbances. The system is bounded by two rigid plates which act as substrate. Boltzmann charge distribution is assumed for the two electrolyte solutions. The effect of van der Waals interactions in these thin films is incorporated in the momentum equations through the disjoining pressure. The base-state velocity profile from the present study is compared with simple experiments and other analytical results. Parametric study involving various electrochemical factors is performed and the stability behaviour is analysed using growth rate, marginal stability, critical amplitude and maximum growth rate in phase space. An increase in the disjoining pressure is found to decrease stability of the system. On the other hand, increasing the frequency of the applied electric field is found to stabilize the system. However, the dependence of the stability on parameters such as viscosity ratio, permittivity ratio, interface zeta potential and interface charge depends not only on the value of individual parameters but also on the rest of the parameters. Design of experiments (DOE) is used to observe the general trend of stability with different parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.