Abstract
This paper presents data for the physical aging of the density of squalane upon both non-linear and nearly linear temperature jumps from states of thermal equilibrium. Invoking the single-parameter-aging scenario [Hecksher et al., J. Chem. Phys. 142, 241103 (2015); Proc. Natl. Acad. Sci. U. S. A. 116, 16736-16741 (2019)], the linear-response aging relaxation function is extracted from the data. Based on this, it is shown that the relaxation toward equilibrium follows a simple exponential function at long times; a stretched-exponential function provides a poor fit. This demonstrates the existence of a terminal relaxation rate for the physical aging of squalane, corresponding to an effective long-time cutoff in the spectrum of structural relaxation times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.