Abstract

7Li NMR relaxation measurements under spin-locking conditions are used to probe the dynamical properties of the lithium counterions within dense dispersions of charged anisotropic nanoplatelets. By simultaneously measuring the T1ρ and T2ρ relaxation times in addition to triple-quantum filtered relaxation times under the same spin-locking conditions, it is possible to separately quantify the contributions from the quadrupolar and the heterogeneous dipolar relaxation mechanisms. Thanks to the contribution from the residual quadrupolar coupling felt by the condensed lithium counterions, that procedure allows a broad dynamical range to be probed by performing spin-locking relaxation measurements using a limited number of irradiation powers. As illustrated by a multiscale modeling of the lithium diffusion and relaxation within such heterogeneous system, the frequency variation of the spectral densities characterizing the decorrelation of the quadrupolar coupling is a sensitive probe of the ionic mobility and the structure of the colloidal dispersion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.