Abstract

In this article, we study the long time numerical stability and asymptotic behavior for the viscoelastic Oldroyd fluid motion equations. Firstly, with the Euler semi-implicit scheme for the temporal discretization, we deduce the global $H^2-$stability result for the fully discrete finite element solution. Secondly, based on the uniform stability of the numerical solution, we investigate the discrete asymptotic behavior and claim that the viscoelastic Oldroyd problem converges to the stationary Navier-Stokes flows if the body force $f(x,t)$ approaches to a steady-state $f_\infty(x)$ as $t\rightarrow\infty$. Finally, some numerical experiments are given to verify the theoretical predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call