Abstract

It is known that wave equations have physically very important properties which should be respected by numerical schemes in order to predict correctly the solution over a long time period. In this paper, the long-time behaviour of momentum and actions for energy-preserving methods is analysed for semi-linear wave equations. A full discretisation of wave equations is derived and analysed by firstly using a spectral semi-discretisation in space and then by applying the adopted average vector field (AAVF) method in time. This numerical scheme can exactly preserve the energy of the semi-discrete system. The main theme of this paper is to analyse another important physical property of the scheme. It is shown that this scheme yields near conservation of a modified momentum and modified actions over long times. The results are rigorously proved based on the technique of modulated Fourier expansions in two stages. First, a multi-frequency modulated Fourier expansion of the AAVF method is constructed, and then two almost-invariants of the modulation system are derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.